1.    Lowell Dilworth, Aldeam Facey and Felix Omoruyi,
Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues,
international journal of molecular sciences, 2021, 22, 7644.
2.    IDF Diabetes Atlas 11th Edition â 2025, page no-43,
IDF Diabetes Atlas Global Diabetes Data
& Statistics
3.    American Diabetes Association. Diagnosis and classification
of diabetes mellitus. Diabetes Care 2014;37:S81-90.
4.    American Diabetes Association. Microvascular complications
and foot care: Standards of medical care in diabetesâ2018. Diabetes Care 2018;41:S105-18.
5.    Dimitrios Baltzis, Ioanna Eleftheriadou, Aristidis
Veves, Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus:
New Insights, Advances in Therapy(2014) 31:817â836.
6.    Porth, Carol, Essentials of pathophysiology: Concepts
of altered health states. Hagerstown, MD: Lippincott Williams &Wilkins. P. 270.
ISBN 0-7817-7087-4, 2017.
7.    Wang W, Yan X, Lin Y, Ge HQ, Tan Q. Wnt7a promotes
wound healing by regulation of angiogenesis and inflammation: issues on diabetes
and obesity, J Dermatol Sci. 2018;91(2):124â133. doi:10.1016/j.jdermsci.2018.02.007.
8.    Mohana sundaram T, Ramachandran V, Bhongiri B, Emdormi Rymbai, Rinu Mary Xavier, Gaddam Narasimha
Rao, Chintha Narendar, The promotion of antioxidant and anti-inflammatory activity
by Nrf2 amplifier is a potential technique in diabetic wound healing-a review, Review.
Pharm Sci. 2023;29(3):255â262. doi:10.34172/ps.2022.45
9.    Dasari N, Jiang A, Skochdopole A, Updates in diabetic
wound healing, inflammation, and scarring. Article. Semin Plast Surg. 2021;35 (03):153â158.
doi:10.1055/s-0041-1731460
10.  Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired
wound healing in diabetes mellitus: new insights. Review. Adv Ther. 2014;31(8):817â836.
doi:10.1007/s12325-014-0140-x.
11. Greenhalgh DG, Wound healing and diabetes mellitus.
Article. Clin Plast Surg. 2003;30(1):37. doi:10.1016/s0094-1298(02)00066-4.
12. Baltzis D, Eleftheriadou I, Veves A. Pathogenesis
and treatment of impaired wound healing in diabetes mellitus: new insights. Review.
Adv Ther. 2014;31(8):817â836. doi:10.1007/s12325-014-0140-x.
13. Ahmed AS. Does diabetes mellitus affect tendon
healing? In: Ackermann PW, Hart DA, editors. Metabolic Influences on Risk for Tendon
Disorders Advances in Experimental Medicine and Biology. Berlin: Springer-Verlag;
2016:179â184.
14. Martin P, Wound healing - Aiming for perfect skin
regeneration. Science 276:75â81,1997
15. Pallavi N. Mohod,
V. Bihani, Kailash, R. Biyani,Â
A REVIEW ON EXPERIMENTAL ANIMAL MODEL OF WOUND HEALING ACTIVITY, International
Journal for Research Trends and Innovation, IJRTIÂ Volume 9, Issue 1,ISSN: 2456-3315, 2024.
16. JOSHUA S. BOATENG, Wound Healing Dressings and
Drug Delivery Systems: A Review, JOURNAL OF PHARMACEUTICAL SCIENCES, VOL. 97, NO.
8, AUGUST 2008.
17. Musset JH, Winfield AJ, Wound management, stoma
and incontinence products. In: Win f ield AJ, Richards RME, editors. Pharmacy practice.
2nd edition. UK: Churchill Livingstone. pp 176â187, 1998.
18. Eccleston GM. 2007. Wound dressings. In: Aulton
ME, editor. Pharmaceutics: The science of dosage form design. 3rd edition. UK: Churchill
Living stone. pp 264â271.
19. Maria E. V. Barreto, Rebeca P. Medeiros, Adam Shearer,
Marcus V. L. Fook, Maziar Montazerian, and John C. Mauro, Gelatin and Bioactive
Glass Composites for Tissue Engineering, A Review Jouranal
of Functional Biomaterials. 2023, 14, 23.
https://doi.org/10.3390/jfb14010023.
20.  J. Moura,
J. Rodrigues, M. Gonçalves, C. Amaral, M. Lima, E. Carvalho, Impaired T-cell differentiation
in diabetic foot ulceration, Cell Mol. Immunol. (2016) 21.
21.  Y. Nishikori, H. Okunishi, N. Shiota, The role of mast cells in cutaneous
wound healing in streptozotocin-induced diabetic mice, Arch. Dermatol. Res. 306
(2014) 823â835.
22. S. B. Mallik, B. S. Jayashree, R .R .Shenoy, Epigenetic
modulation of macrophage polarization-perspectives in diabetic wounds, J. Diabetes
Complications (2018), doi.j.jdiacomp.2018.01.015.
23.  S. Barrientos, O. Stojadinovic, M.S. Golinko, H. Brem, M. TomicCanic, Growth
factors and cytokines in wound healing, Wound Repair Regen. 16 (2008) 585â601.
24. L. Pradhan, X. Cai, S. Wu, N.D. Andersen, M. Martin,
J. Malek, Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic
wound healing, J. Surg. Res. 167 (2011) 336â342.
25. Satish Patel, Shikha Srivastava, Manju Rawat Singh,
Deependra Singh, Mechanistic insight into diabetic wounds: Pathogenesis, molecular
targets and treatment strategies to pace wound healing, Biomedicine & Pharmacotherapy,
Volume 112, April 2019, 108615.
26. Alexiadou K, Doupis J. Management of diabetic
foot ulcers. Diabetes Ther. 2012;3:4.
27. Zhang J, Guan M, Xie C, Luo X, Zhang Q, Xue Y.
Increased growth factors play a role in wound healing promoted by noninvasive oxygen-ozone
therapy in diabetic patients with foot ulcers. Oxid Med Cell Longev. 2014;2014:273475.
28. Spentzouris G, Labropoulos N. The evaluation of
lower-extremity ulcers. Semin Interv Radiol. 2009;26:286-295.
29. Aydin A, Shenbagamurthi S, Brem H. Lower extremity
ulcers: venous, arterial, or diabetic? Emerg Med. 2009;41:18-24.
30. Armstrong DG, Boulton AJM, Bus SA. Diabetic foot
ulcers and their recurrence. N Engl J Med. 2017;376:2367-2375.
31. Spiliopoulos S, Festas G, Paraskevopoulos I, Mariappan
M, Brountzos E, Over coming ischemia in the
diabetic foot: minimally invasive treatment options. World J Diabetes. 2021;12:2011-2026.
32. Liao X, Li SH, El Akkawi MM, Fu XB, Liu HW, Huang
YS. Surgical amputation for patients with diabetic foot ulcers: a Chinese expert
panel consensus treatment guide. Front Surg. 2022;9:10033391.
33. Suriadi Jais, Various Types of Wounds That Diabetic
Patients Can Develop: A Narrative Review, Clinical Pathology Volume 16: 1â6.
34. Foot Ulcers: Spectrum of Ischemia | Michael
Cumming, MD, MBA
35. Contreras I, Vehi J. Artificial intelligence for
diabetes management and decision support: literature review. Journal Med Internet
Res 2018;20 (5):e10775.
36. Samabia Tehsin, Sumaira Kausar, Amina Jameel,
Diabetic wounds and artificial intelligence: A mini-review, World Journal of Clinical
Cases, 2023 January 6; 11(1): 84-91 ISSN 2307-8960.
37. Ovya
Ganesan, Miranda Xiao Morris, Lifei Guo, Dennis Orgill1, A review of artificial
intelligence in wound care Surgery, DOI:10.20517/
ais.2024.68,
38. Swerdlow M, Guler O, Yaakov R, Armstrong DG. Simultaneous
segmentation and classification of pressure injury image data using Mask-R-CNN.
Comput Math Methods Med 2023;2023:3858997. DOI PubMed PMC.
39. Zahia S, Sierra-Sosa D, Garcia-Zapirain B, Elmaghraby
A. Tissue classification and segmentation of pressure injuries using convolutional
neural networks. Comput Methods Programs Biomed 2018;159:51-8. DOI PubMed.
40. Eldem H, Ãlker E, IÅıklı OY. Alexnet architecture
variations with transfer learning for classification of wound images. Eng Sci Technol
Int J DOI 2023;45:101490.
41. Mohammed HT, Bartlett RL, Babb D, Fraser RDJ,
Mannion D. A time motion study of manual versus artificial intelligence methods
for wound assessment. PLoS One 2022;17:e0271742. DOI PubMed PMC.
42. Dankwa-Mullan I, Rivo M, Sepulveda M, Park Y,
Snowdon J, Rhee K. Transforming diabetes care through artificial intelligence: the
future is here. Popul Health Manag 2019;22(3):229â42.
43. Chairat S, Chaichulee S, Dissaneewate T, Wangkulangkul
P, Kongpanichakul L. AI-assisted assessment of wound tissue with automatic color
and measurement calibration on images taken with a smartphone. Healthcare 2023;11:273.
DOI PubMed PMC
44. Kavitha I, Suganthi SS, Ramakrishnan S. Analysis
of chronic wound images using factorization based segmentation and machine learning
methods. In: Proceedings of the 2017 International Conference on Computational Biology
and Bioinformatics (ICCBB '17); New York, USA. pp. 74-8. DOI.
45. Kaile K, Leiva K, Mahadevan J, et al. Low-cost
smartphone based imaging device to detect subsurface tissue oxygenation of wounds.
In: Optics and Biophotonics in Low-Resource Settings V; San Francisco, USA. 2019.
pp. 62-5. DOI.
46. Kalasin S, Sangnuang P, Surareungchai W. Intelligent
wearable sensors interconnected with advanced wound dressing bandages for contactless
chronic skin monitoring: artificial intelligence for predicting tissue regeneration.
Anal Chem 2022;94:6842-52. DOI PubMed.
47. Topaz M, Lai K, Dowding D, Automated identification of wound information
in clinical notes of patients with heart diseases: developing and validating a natural
language processing application. Int J Nurs Stud 2016;64:25-31. DOI PubMed.
48. Robnik-Sikonja M, Cukjati D, Kononenko I. Comprehensible
evaluation of prognostic factors and prediction of wound healing. Artificial Intelligence
Med 2003;29:25-38. DOI PubMed.
49. Ngo QC, Ogrin R, Kumar DK. Computerised prediction
of healing for venous leg ulcers. Sci Rep 2022;12:17962. DOI PubMed PMC.
50. Alderden J, Pepper GA, Wilson A, Predicting pressure
injury in critical care patients: a machine-learning model. Am J Crit Care 2018;27:461-8.
DOI PubMed PMC.
51. Ramawat,Y.,Nitesh,K.,Kumar,V.,Pareek.S, The Role
of Artificial Intelligence in Chronic Wound Assessment and Management, The Wocsi
Journal of Medical Science 1(1) (2023)
52. Van Netten JJ, Woodburn J, Bus SA. The future
for diabetic foot ulcer prevention: A paradigm shift from stratified healthcare
towards personalized medicine. Diabetes Metab Res Rev. 2020;36 Suppl 1:e3234.
Orcid Id
Download
6
Views
61